Short- and long-term greenhouse gas and radiative forcing impacts of changing water management in Asian rice paddies
ثبت نشده
چکیده
Fertilized rice paddy soils emit methane while flooded, emit nitrous oxide during flooding and draining transitions, and can be a source or sink of carbon dioxide. Changing water management of rice paddies can affect net emissions of all three of these greenhouse gases. We used denitrification–decomposition (DNDC), a process-based biogeochemistry model, to evaluate the annual emissions of CH4, N2O, and CO2 for continuously flooded, single-, double-, and triple-cropped rice (three baseline scenarios), and in further simulations, the change in emissions with changing water management to midseason draining of the paddies, and to alternating crops of midseason drained rice and upland crops (two alternatives for each baseline scenario). We used a set of firstorder atmospheric models to track the atmospheric burden of each gas over 500 years. We evaluated the dynamics of the radiative forcing due to the changes in emissions of CH4, N2O, and CO2 (alternative minus baseline), and compared these with standard calculations of CO2-equivalent emissions using global warming potentials (GWPs). All alternative scenarios had lower CH4 emissions and higher N2O emissions than their corresponding baseline cases, and all but one sequestered carbon in the soil more slowly. Because of differences in emissions, in radiative forcing per molecule, and in atmospheric time constants (lifetimes), the relative radiative impacts of CH4, N2O, and CO2 varied over the 500-year simulations. In three of the six cases, the initial change in radiative forcing was dominated by reduced CH4 emissions (i.e. a cooling for the first few decades); in five of the six cases, the long-term radiative forcing was dominated by increased N2O emissions (i.e. a warming over several centuries). The overall complexity of the radiative forcing response to changing water management could not easily be captured with conventional GWP calculations.
منابع مشابه
Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: A case study for water management of rice agriculture of China
[1] Since the early 1980s, water management of rice paddies in China has changed substantially, with midseason drainage gradually replacing continuous flooding. This has provided an opportunity to estimate how a management alternative impacts greenhouse gas emissions at a large regional scale. We integrated a process-based model, DNDC, with a GIS database of paddy area, soil properties, and man...
متن کاملMapping and modelling of greenhouse gas emissions from rice paddies with satellite radar observations and the DNDC biogeochemical model
1. Rice is an important agricultural production system with more than 80 million ha of irrigated rice paddies in annual production globally. As water resources become scarcer, the competition between urban development and agriculture for available water will intensify. Paddy rice cropland distribution and management intensity will need to evolve over the coming decades to accommodate increased ...
متن کاملAssessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years.
Assessments of the efficacy of mitigation of greenhouse gas (GHG) emissions from paddy rice systems have typically been analyzed based on field studies. Extrapolation of the mitigation potential of alternative management practices from field studies to a national scale may be enhanced by spatially explicit process models, like the DeNitrification and DeComposition (DNDC) model. Our objective wa...
متن کاملEconomic Impact Assessment of Climate Change- a Multi-gas Investigation with Wiagem-icm
Climate change is a long-term issue due to the long lifespan of greenhouse gases and the delayed response of the climate system. This paper investigates the long-term economic consequences of both climate change impacts and mitigation efforts by applying the multiregional, multi-sectoral integrated assessment model WIAGEM based on GTAP-E –L coupled with the reduced-form multi-gas climate model ...
متن کاملRevealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)
Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...
متن کامل